• 為什么叫“卡爾曼”,卡爾曼濾波器算法介紹

    2018-09-21 16:17:27 來源:pcbbbs
    標簽:

     

    首先看看為什么叫“卡爾曼”。跟其他著名的理論(例如傅立葉變換,泰勒級數等等)一樣,卡爾曼也是一個人的名字,而跟他們不同的是,他是個現代人!

     

    1、卡爾曼全名Rudolf Emil Kalman

    匈牙利數學家,1930年出生于匈牙利首都布達佩斯。1953,1954年于麻省理工學院分別獲得電機工程學士及碩士學位。1957年于哥倫比亞大學獲得博士學位。我們現在要學習的卡爾曼濾波器,正是源于他的博士論文和1960年發表的論文《A New Approach to Linear Filtering and Prediction Problems》(線性濾波與預測問題的新方法)。

     

    簡單來說,卡爾曼濾波器是一個“optimal recursive data processing algorithm(最優化自回歸數據處理算法)”。對于解決很大部分的問題,他是最優,效率最高甚至是最有用的。他的廣泛應用已經超過30年,包括機器 人導航,控制,傳感器數據融合甚至在軍事方面的雷達系統以及導彈追蹤等等。近年來更被應用于計算機圖像處理,例如頭臉識別,圖像分割,圖像邊緣檢測等等。

     

    2、卡爾曼濾波器的介紹(Introduction to the Kalman Filter)

    為了可以更加容易的理解卡爾曼濾波器,這里會應用形象的描述方法來講解,而不是像大多數參考書那樣羅列一大堆的數學公式和數學符號。但是,他的5條公式是其核心內容。結合現代的計算機,其實卡爾曼的程序相當的簡單,只要你理解了他的那5條公式。

     

    在介紹他的5條公式之前,先讓我們來根據下面的例子一步一步的探索。

     

    假設我們要研究的對象是一個房間的溫度。根據你的經驗判斷,這個房間的溫度是恒定的,也就是下一分鐘的溫度等于現在這一分鐘的溫度(假設我們用一分鐘來做時 間單位)。假設你對你的經驗不是100%的相信,可能會有上下偏差幾度。我們把這些偏差看成是高斯白噪聲(White Gaussian Noise),也就是這些偏差跟前后時間是沒有關系的而且符合高斯分配(Gaussian Distribution)。另外,我們在房間里放一個溫度計,但是這個溫度計也不準確的,測量值會比實際值偏差。我們也把這些偏差看成是高斯白噪聲。

     

    好了,現在對于某一分鐘我們有兩個有關于該房間的溫度值:你根據經驗的預測值(系統的預測值)和溫度計的值(測量值)。下面我們要用這兩個值結合他們各自的噪聲來估算出房間的實際溫度值。

     

    假如我們要估算k時刻的是實際溫度值。首先你要根據k-1時刻的溫度值,來預測k時刻的溫度。因為你相信溫度是恒定的,所以你會得到k時刻的溫度預測值是跟k-1時刻一樣的,假設是23度,同時該值的高斯噪聲的偏差是5度(5是這樣得到的:如果k-1時刻估算出的最優溫度值的偏差是3,你對自己預測的不確定度是4度,他們平方相加再開方,就是5)。然后,你從溫度計那里得到了k時刻的溫度值,假設是25度,同時該值的偏差是4度。

     

    由于我們用于估算k時刻的實際溫度有兩個溫度值,分別是23度和25度。究竟實際溫度是多少呢?相信自己還是相信溫度計呢?究竟相信誰多一點,我們可以用他們的covariance來判斷。因為Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我們可以估算出k時刻的實際溫度值是:23+0.78*(25-23)=24.56度。可以看出,因為溫度計的covariance比較小(比較相信溫度計),所以估算出的最優溫度值偏向溫度計的值。

     

    現在我們已經得到k時刻的最優溫度值了,下一步就是要進入k+1時刻,進行新的最優估算。到現在為止,好像還沒看到什么自回歸的東西出現。對了,在進入k+1時刻之前,我們還要算出k時刻那個最優值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。這里的5就是上面的k時刻你預測的那個23度溫度值的偏差,得出的2.35就是進入k+1時刻以后k時刻估算出的最優溫度值的偏差(對應于上面的3)。

     

    就是這樣,卡爾曼濾波器就不斷的把covariance遞歸,從而估算出最優的溫度值。他運行的很快,而且它只保留了上一時刻的covariance。上面的Kg,就是卡爾曼增益(Kalman Gain)。他可以隨不同的時刻而改變他自己的值,是不是很神奇!

     

    下面就要言歸正傳,討論真正工程系統上的卡爾曼。

     

    3、卡爾曼濾波器算法(The Kalman Filter Algorithm)

    在這一部分,我們就來描述源于Dr Kalman 的卡爾曼濾波器。下面的描述,會涉及一些基本的概念知識,包括概率(Probability),隨即變量(Random Variable),高斯或正態分配(Gaussian Distribution)還有State-space Model等等。但對于卡爾曼濾波器的詳細證明,這里不能一一描述。

     

    首先,我們先要引入一個離散控制過程的系統。該系統可用一個線性隨機微分方程(Linear Stochastic Difference equation)來描述:

    X(k)=A X(k-1)+B U(k)+W(k)

     

    再加上系統的測量值:

    Z(k)=H X(k)+V(k)

     

    上兩式子中,X(k)是k時刻的系統狀態,U(k)是k時刻對系統的控制量。A和B是系統參數,對于多模型系統,他們為矩陣。 Z(k)是k時刻的測量值,H是測量系統的參數,對于多測量系統,H為矩陣。W(k)和V(k)分別表示過程和測量的噪聲。他們被假設成高斯白噪聲 (White Gaussian Noise),他們的covariance 分別是Q,R(這里我們假設他們不隨系統狀態變化而變化)。

     

    對于滿足上面的條件(線性隨機微分系統,過程和測量都是高斯白噪聲),卡爾曼濾波器是最優的信息處理器。下面我們來用他們結合他們的covariances 來估算系統的最優化輸出(類似上一節那個溫度的例子)。

     

    首先我們要利用系統的過程模型,來預測下一狀態的系統。假設現在的系統狀態是k,根據系統的模型,可以基于系統的上一狀態而預測出現在狀態:

    X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)

     

    式(1)中,X(k|k-1)是利用上一狀態預測的結果,X(k-1|k-1)是上一狀態最優的結果,U(k)為現在狀態的控制量,如果沒有控制量,它可以為0。

     

    到現在為止,我們的系統結果已經更新了,可是,對應于X(k|k-1)的covariance還沒更新。我們用P表示covariance:

    P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)

     

    式(2)中,P(k|k-1)是X(k|k-1)對應的covariance,P(k-1|k-1)是X(k-1|k-1)對應的 covariance,A’表示A的轉置矩陣,Q是系統過程的covariance。式子1,2就是卡爾曼濾波器5個公式當中的前兩個,也就是對系統的預 測。

     

    現在我們有了現在狀態的預測結果,然后我們再收集現在狀態的測量值。結合預測值和測量值,我們可以得到現在狀態(k)的最優化估算值X(k|k):

    X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)

     

    其中Kg為卡爾曼增益(Kalman Gain):

    Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)

     

    到現在為止,我們已經得到了k狀態下最優的估算值X(k|k)。但是為了要另卡爾曼濾波器不斷的運行下去直到系統過程結束,我們還要更新k狀態下X(k|k)的covariance:

    P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)

     

    其中I 為1的矩陣,對于單模型單測量,I=1。當系統進入k+1狀態時,P(k|k)就是式子(2)的P(k-1|k-1)。這樣,算法就可以自回歸的運算下去。

     

    卡爾曼濾波器的原理基本描述了,式子1,2,3,4和5就是他的5 個基本公式。根據這5個公式,可以很容易的實現計算機的程序。

     

    下面,我會用程序舉一個實際運行的例子。。。

     

    4、簡單例子(A Simple Example)

    這里我們結合第二第三節,舉一個非常簡單的例子來說明卡爾曼濾波器的工作過程。所舉的例子是進一步描述第二節的例子,而且還會配以程序模擬結果。

     

    根據第二節的描述,把房間看成一個系統,然后對這個系統建模。當然,我們見的模型不需要非常地精確。我們所知道的這個房間的溫度是跟前一時刻的溫度相同的,所以A=1。沒有控制量,所以U(k)=0。因此得出:

    X(k|k-1)=X(k-1|k-1) ……….. (6)

    式子(2)可以改成:

    P(k|k-1)=P(k-1|k-1) +Q ……… (7)

     

    因為測量的值是溫度計的,跟溫度直接對應,所以H=1。式子3,4,5可以改成以下:

    X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) ……… (8)

    Kg(k)= P(k|k-1) / (P(k|k-1) + R) ……… (9)

    P(k|k)=(1-Kg(k))P(k|k-1) ……… (10)

     

    現在我們模擬一組測量值作為輸入。假設房間的真實溫度為25度,我模擬了200個測量值,這些測量值的平均值為25度,但是加入了標準偏差為幾度的高斯白噪聲(在圖中為藍線)。

     

    為了令卡爾曼濾波器開始工作,我們需要告訴卡爾曼兩個零時刻的初始值,是X(0|0)和P(0|0)。他們的值不用太在意,隨便給一個就可以了,因為隨著卡 爾曼的工作,X會逐漸的收斂。但是對于P,一般不要取0,因為這樣可能會令卡爾曼完全相信你給定的X(0|0)是系統最優的,從而使算法不能收斂。我選了 X(0|0)=1度,P(0|0)=10。

     

    該系統的真實溫度為25度,圖中用黑線表示。圖中紅線是卡爾曼濾波器輸出的最優化結果(該結果在算法中設置了Q=1e-6,R=1e-1)。

     

    ××××××××××××××××××

    附matlab下面的kalman濾波程序:

    clear

    N=200;

    w(1)=0;

    w=randn(1,N)

    x(1)=0;

    a=1;

    for k=2:N;

    x(k)=a*x(k-1)+w(k-1);

    end

    V=randn(1,N);

    q1=std(V);

    Rvv=q1.^2;

    q2=std(x);

    Rxx=q2.^2;

    q3=std(w);

    Rww=q3.^2;

    c=0.2;

    Y=c*x+V;

    p(1)=0;

    s(1)=0;

    for t=2:N;

    p1(t)=a.^2*p(t-1)+Rww;

    b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);

    s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));

    p(t)=p1(t)-c*b(t)*p1(t);

    end

     

    t=1:N;

    plot(t,s,'r',t,Y,'g',t,x,'b');

     

     
    關注與非網微信 ( ee-focus )
    限量版產業觀察、行業動態、技術大餐每日推薦
    享受快時代的精品慢閱讀
     

     

    繼續閱讀
    容易實現的三階環路濾波器的設計方法就在這里

    小數分頻頻率合成器在測試時必須外接一個環路濾波器電路與壓控振蕩器才能構成一個完整的鎖相環電路。其外圍電路中環路濾波器的設計好壞將直接影響到芯片的性能測試。以ADF4153小數分頻頻率合成器為例,研究了其外圍環路濾波器的設計方法,給出了基于芯片測試的環路濾波器設計流程,并進行了驗證測試。測試結果表明,該濾波器可滿足小數分頻頻率合成器芯片測試

    一文讀懂濾波器的使用與設計
    一文讀懂濾波器的使用與設計

    在電子系統里濾波器是很見的組成部分,可以通過R,L,C的搭配組成各種濾波電路。一階RC濾波器的截止頻率等于1/2*pi*RC.,R,C,L串聯可以搭建二階帶通濾波器等等。

    如何預防頻譜分析儀的損壞呢?教你幾招

    頻譜分析儀是研究電信號頻譜結構的儀器,用于信號失真度、調制度、譜純度、頻率穩定度和交調失真等信號參數的測量,可用以測量放大器和濾波器等電路系統的某些參數,是一種多用途的電子測量儀器。

    音響電源濾波器在音響系統中很重要

    我們日常使用音響聽音樂,討論了很多關于喇叭、箱體、音源等影響音質的話題。今天我們來談談音響電源濾波器,可能有些人還很陌生,它到底有什么作用?其實,音響電源濾波器在音響系統里面發揮著非常重要的角色。

    三相電源濾波器分類 詳解三相電源濾波器系列

    三相電源濾波器的大家應該都挺熟悉的了,三相電源濾波器有哪些類型和系列你知道多少?本文將來為你揭曉關于三相電源濾波器分類的相關知識。

    更多資訊
    Pickering Interfaces最新推出的4、6通道LXI微波多路復用 解決方案具有出色的射頻特性和可重復性

    2018年9月17日,于英國濱海克拉克頓鎮,作為電子測試和驗證領域模塊化信號開關與仿真產品的領導者,英國Pickering公司于近日發布了新款四通道和六通道的LXI 50Ω微波多路復用開關,外形緊湊,高1U或2U,適合機柜安裝。

    Pasternack推出新型軍用射頻電纜組件

    Commercial Off-the-Shelf MIL-DTL-17 Cable Assemblies Feature Operating Frequencies of up to 12.4 GHz

    光學頻率梳為什么是重大突破?

    光學頻率梳是繼超短脈沖激光問世之后激光技術領域的又一重大突破。光學頻率梳由“鎖模激光器”產生,是一種超短脈沖(飛秒1e-15s量級)的新型激光光源。飛秒激光脈沖是通過鎖定飛秒激光器內所有能夠振蕩的激光縱模的相位而形成的周期性脈沖。

    這種振蕩電路只能用32.768KHZ 的晶體?

    振蕩電路用于實時時鐘RTC,對于這種振蕩電路只能用32.768KHZ 的晶體,晶體被連接在OSC3 與OSC4 之間而且為了獲得穩定的頻率必須外加兩個帶外部電阻的電容以構成振蕩電路。

    英國比克科技發布快速射頻信號合成器AS108和網絡分析儀標準檢測件TA43x

    英國比克科技(Pico Technology)于2018年9月25日在慕尼黑印度電子展和歐洲微波展同時發布兩款射頻新產品:快速射頻信號合成器AS108和矢量網絡分析儀標準檢測件TA430和TA431。

    Moore8直播課堂
    北京十一选五走势图