•  

    降压调节器在低功耗供电?#20302;?#20013;的应用

    2019-01-21 10:46:03 来源:eccn
    标签:

     

    智能手机、平板电脑、数码相机、导航?#20302;场?#21307;疗设备和其它低功耗便携式设备常常包含多个采用不同半导体工艺制造的集成电路。这些设备通常需要多个独立的电源电压,各电源电压一般不同于电池或外部 AC/DC电源提供的电压。


    图 1 显示了一个采用锂离子电池供电的典型低功耗?#20302;?/a>。电池的可用输出范围是 3 V到 4.2V,而IC需要 0.8 V、1.8 V、 2.5 V和 2.8 V电压。为将电池电压降至较低的直流电压,一种简单的方法是运用低压差调节器(LDO)。不过,当VIN远高于 VOUT时,未输送到负载的功率会以热量形式损失,导致LDO 效率低下。一种常见的替代方案是采用开关转换器,它将能量交替存储在电感的磁场中,然后以不同的电压释放给负载。这种方案的损耗较低,是一种更好的选择,可实现高效?#35797;?#34892;。本文介绍降压型转换器,它提供较低的输出电压。升压型转换器将另文介绍,它提供较高的输出电压。内置 FET作为开关的开关转换器称为开关调节器,需要外部FET的开关转换器则称为开关控制器。多数低功耗?#20302;?#21516;时运用 LDO和开关转换器?#35789;?#29616;成本和性能目标。

     


    图 1. 典型低功耗便携式?#20302;?/p>


    降压调节器包括 2 个开关、2 个电容和 1 个电感,如图 2 所示。非交叠开关驱动机制确保任一时间只有一个开关导通,避免发生不良的电流“直通”现象。在第 1 阶段,开关B断开,开关A闭合。电感连接到VIN,因此电流从VIN流到负载。由于电感两端为正电压,因此电流增大。在第 2 阶段,开关A断开,开关B闭合。电感连接?#38477;兀?#22240;此电流从地流到负载。由于电感两端为负电压,因此电流减小,电感中存储的能量释放到负载中。

     


    图 2. 降压转换器拓扑结构和工作波形


    注意,开关调节器既可以连续工作,?#37096;?#20197;断续工作。连续导通以连续导通模式(CCM)工作时,电感电流不会降至 0;以断续导通模式(DCM)工作时,电感电流可以降至 0。低功耗降压转换器很少在断续导通模式下工作。设计的,电流纹波(如图 2中的ΔI 所示)通常为标称负载电流的 20%到 50%。


    在图 3 中,开关 A 和开关 B 分别利用 PFET 和 NFET 开关实现,构成一个同步降压调节器。“同步”一词表示将一个 FET 用作低端开关。用肖特基二极管代替低端开关的降压调节器称为“异步”(或非同步)型。处理低功率时,同步降压调节器更?#34892;В?#22240;为 FET 的压降低于肖特基二极管。然而,当电感电流达到 0 时,如果底部 FET ?#35789;?#25918;,同?#38454;?#25442;器的轻载效率会降低,而且额外的控制电路会提高 IC 的复?#26377;院统?#26412;。

     


    图 3. 降压调节器集成振荡器、PWM控制环路和开关 FET


    目前的低功耗同步降压调节器以脉宽调制(PWM)为主要工作模式。PWM保?#21046;?#29575;不变,通过改变脉冲宽度(tON)来调整输出电压。输送的平均功率与占空比D成正比,因此这是一种向负载提高功率的?#34892;?#26041;式。

     


    FET 开关由脉宽控制器控制,后者响应负载变化,利用控制环路中的电压或电流反馈来调节输出电压。低功耗降压转换器的工作频?#21490;?#22260;一般是 1 MHz 到 6 MHz。开关频?#24335;?#39640;时,所用的电感可以更小,但开关频率每增加一倍,效?#31034;?#20250;降低大约 2%。


    在轻载下,PWM 工作模式并不总是能够提高?#20302;?#25928;率。以图形卡电源电路为例,视?#30340;?#23481;改变时,驱动图形处理器的降压转换器的负载电流?#19981;?#25913;变。连续 PWM 工作模式可?#28304;?#29702;宽范围的负载电流,但在轻载下,调节器所需的功率会?#26082;?#36755;送给负载的总功率的较大比例,导致?#20302;?#25928;率迅速降低。针对便携应用,降压调节器集成了其它省电技术,如脉冲频率调制(PFM)、脉冲跳跃或这两者的结?#31995;取?/p>


    ADI公司将高效?#26159;?#36733;工作模式定义为“省电模式”(PSM)。进入省电模式时,PWM调节电平会产生偏移,导致输出电压上升,直至它达到比PWM调节电平高约 1.5%的电平,此时 PWM工作模式关闭,两个功率开关均断开,器件进入空闲模式。COUT可以放电,直到VOUT降至PWM调节电压。然后,器件驱动电感,导致VOUT再次上升到阈值上限。只要负载电流低于省电模?#38477;?#27969;阈值,?#26031;?#31243;就会重复进行。


    ADP2138 是一款紧凑型 800 mA、3 MHz、降压 DC-DC 转换器。图 4所示为典型应用电路。图 5显示了强制 PWM工作模式下和自动 PWM/PSM 工作模式下的效率改善情况。由于频率存在变化,PSM 干扰可能难以滤除,因此许多降压调节器提供一个 MODE 引脚(如图 4 所示),用户可以通过该引脚强制器件以连续 PWM 模式工作,或者允许器件以自动 PWM/PSM 模式工作。MODE 引脚既可以通过硬连线来设置任一工作模式,?#37096;?#20197;根据需要而动态切换,?#28304;?#21040;省电目的。

     


    图 4. ADP2138/ADP2139典型应用电路

     


    图 5. ADP2138的效率:(a) 连续 PWM模式;(b) PSM模式


    降压调节器提高效率

    电池的续航时间是新型便携式设备设计高度关注的一个特性。提高?#20302;?#25928;率可以延长电池工作时间,降低更换或充电的频度。例如,一个锂离子充电电池可以使用ADP125 LDO以 0.8 V电压驱动一个 500 mA负载,如图 6 所示。该LDO的效?#25163;?#26377; 19% (VOUT/VIN × 100% = 0.8/4.2 × 100%)。LDO无法存储?#35789;?#29992;的能量,因此剩余的 81%的功率(1.7 W)只能以热量形式在LDO内部耗散掉,这可能会导致手持式设备的温度迅速上升。如果使用ADP2138 开关调节器,在 4.2 V输入和 0.8 V输出下,工作效?#24335;?#26159; 82%,比前一方案的效率高出 4 倍多,便携式设备的温度升幅将大大减小。这些?#20302;?#25928;率的大幅改善使得开关调节器大量运用于便携式设备。

     


    降压转换器关键规格和定义

    输入电压范围:降压转换器的输入电压范围决定了最低的可用输入电源电压。规格可能提供很宽的输入电压范围,但VIN 必须高于VOUT才能实现高效率工作。例如,要获得稳定的 3.3 V输出电压,输入电压必须高于 3.8 V。


    地电流或静态电流:IQ是未输送给负载的直流偏置电流。器件的IQ?#38477;停?#21017;效?#35797;?#39640;。然而,IQ可以针对许多条件进行规定,包括关断、零负载、PFM工作模式或PWM工作模式。因此,为了?#33539;?#26576;个应用的最佳降压调节器,最好查看特定工作电压和负载电流下的?#23548;?#24037;作效率数据。
    关断电流: 这是使能引脚禁用时器件消耗的输入电流,对低功耗降压调节器来?#20302;?#24120;远低于 1µA。这一指标对于便携式设备处于睡眠模式时电池能否具有长待机时间很重要。


    输出电压精度: ADI 公司的降压转换器具有很高的输出电压精度,固定输出器件在工厂制造时就被精确调整到±2%之内(25°C)。输出电压精度在工作温度、输入电压和负载电流范围条件下加以规定,最差情况下的不精确性规定为±x%。


    线路调整率: 线路调整率是指额定负载下输出电压随输入电压变化而发生的变化率。
    负载调整率: 负载调整率是指输出电压随输出电流变化而发生的变化率。对于缓慢变化的负载电流,大多数降压调节器都能保持输出电压基本上恒定不变。


    负载瞬变:如果负载电流从较低水平快速变化到较高水平,导致工作模式在 PFM 与 PWM 之间切换,或者从 PWM 切换到 PFM,就可能产生瞬态误差。并非所有数据手册都会规定负载瞬变,但大多数数据手册都会提供不同工作条件下的负载瞬态响应曲线。


    限流:ADP2138 等降压调节器内置保护电路,限制流经 PFET 开关和同步整流器的正向电流。正电流控制限制可从输入端流向输出端的电流量。负电流限值防止电感电流反向并流出负载.
    软启动?#32791;?#37096;软启动功能对于降压调节器非常重要,它在启动时控制输出电压缓升,从而限制浪涌电流。这样,当电池或高阻抗电源连接到转换器输入端时,可以防止输入电压下降。器件使能后,内部电路开始上电周期。


    启动时间是指使能信号的上升沿至VOUT达到其标称值的 90%的时间。这个测试通常是在施加VIN、使能引脚从断开切换到接通的条件下进行。在使能引脚连接到VIN的情况下,当VIN从关断切换到开启时,启动时间可能会大幅增加,因为控制环路需要一定的稳定时间。在调节器需要频繁启动和关?#25214;?#33410;省功耗的便携式?#20302;?#20013;,调节器的启动时间是一个重要的考虑因素.


    热关断(TSD): 当结点温度超过规定的限值时,热关断电路就会关闭调节器。极端的结温可能由工作电流高、电路板冷却不佳或环境温度高等原因引起。保护电路包括一定的迟滞,防止器件在芯片温度降至预设限值以下之前返回正常工作状态。


    100%占空比工作: 随着VIN下降或ILOAD上升,降压调节器会达到一个限值?#26477;词筆FET开关以 100%占空比导通,VOUT仍低于预期的输出电压。此时,ADP2138 平滑过渡到可使PFET 开关保持 100%占空比导通的模式。当输入条件改变时,器件立即重新启动PWM调节,VOUT不会过冲。


    放电开关: 在某些?#20302;?#20013;,如果负载非常小,降压调节器的输出可能会在?#20302;?#36827;入睡眠模式后的一定时间内仍然保持较高水平。然而,如果?#20302;?#22312;输出电压放电之前启动上电序列,?#20302;?#21487;能会发生闩锁,或者导致器件受损。当使能引脚变为低电平或器件进入欠压闭锁/热关断状态时,ADP2139 降压调节器通过集成的开关电阻(典型值 100 Ω)给输出放电。


    欠压闭锁: 欠压闭锁(UVLO)可以确保只有在?#20302;?#36755;入电压高于规定阈值时才向负载输出电压。UVLO 很重要,因为它只在输入电压达到或超过器件稳定工作要求的电压时才让器件上电.


    结束语

    低功耗降压调节器使开关DC-DC转换器设计不再神秘。ADI 公司提供一系列高集成度、坚固耐用、易于使用、高性价比的降压调节器,只需极少的外部元件就能实现高工作效率。?#20302;?#35774;计师可以使用数据手册应用部分提供的设计计算,或者使用 ADIsimPower™ 设计工具

     
    关注与非网微信 ( ee-focus )
    限量版产业观察、行业动态、技术大餐每日推荐
    享受快时代的精品慢阅读
     

     

    继续阅读
    【技术分享】DC/DC电源转换电路设计的十一条金律

    有时候搞嵌入?#38477;?#24037;程师们往往把单片机、ARM、DSP、FPGA搞的得心应手,而一旦进行?#20302;?#35774;计,到了给电源?#20302;?#20379;电,虽然也能让其精心设计的程序运行起来,但对于新手来说,有时可能效率低下,往往还有供电电流不足或过大引起这样那样的问题,本文十一大金律轻松搞定DCDC电源转换电路设计。

    【技术分享】FPGA越来越精密,对DC-DC电源的精度也越来越高

    FPGA厂商不断采用更先进的工艺来降低器件功耗,提高性能,同时FPGA对供电电源的精度要求也越加?#37327;蹋?#30005;压必须维持在非常严格的容限内,如果供电电压范围超出?#26031;?#33539;的要求,就有会影响到FPGA的可靠性,甚至导致FPGA失效。

    【技术分享】什?#35789;荘WM?基础原理是什么?
    【技术分享】什?#35789;荘WM?基础原理是什么?

    脉宽调制技术是通过控制半导体开关器件的通断时间,在输出端获得幅度相等而宽度可调的波形(称PWM波形),从而实现控制输出电压的大小和频?#19990;?#25913;善输出波形的一种技术。

    适用于打印机、电器、工业设备?#20154;?#24335;直流电机驱动器

    AT4950是一款刷式直流电机驱动器,适用于打印机、电器、工业设备以及其他小型机器。两个逻辑输入控制H桥驱动器,?#20204;?#21160;器由四个N-MOS组成,能够以高达3.6A的峰值电流双向控制电机。利用电流衰减模式,可通过对输入进行脉宽调制(PWM)来控制电机转速。如果将两个输入均置为低电平,则电机驱动器将进入低功耗休眠模式。

    ADI推出超低功耗降压调节器ADP5301

    Analog Devices, Inc.最近发布了一款超低功耗降压调节器ADP5301,具有业界最高的超轻负载电源转换效率,可延长便携式设备的电池寿命。降压调节器ADP5301额定效率为90%,静态电流仅为180nA,相比以前的器件能在更长时间内提供最大功率,非常适合物联网(IoT)应用。

    更多资讯
    中科芯韵半导体产?#20302;?#36164;基金落地徐州

    近日,徐州中科芯韵半导体产?#20302;?#36164;基金(简称“中科芯韵基金?#20445;?#27491;式签约落地,基金总规模2.005亿元。

    ?#26412;?#25104;卫星导航产业中?#27169;?018年产业规模超500亿元

    5月22日,?#26412;┦芯?#27982;和信息化局在第十届中国卫星导航年会上发布了《?#26412;?#24066;?#20493;?#23548;航与位置服务产业发展与应用白皮书(2019)》

    耦合电路的原理、功能以及种类详解
    耦合电路的原理、功能以及种类详解

    多级放大器中,每一级放大器之间是相对独立的,要将一?#37117;?#25918;大器之间连接起来,级间耦合电路不可缺少。

    如何设计RTC电路
    如何设计RTC电路

    RTC(Real_Time Clock)为整个电子?#20302;?#25552;供时间基准,MCU、MPU、CPU均离不开RTC电路设计,在设计、应用RTC单元时,常常会发现延时、超时或者功耗过大现象,如何解决RTC精度以及功耗问题呢?本文将为您介绍时钟芯片PCF8563应用设计,并给出相应的解决方法。

    你必须了解的电磁兼容设计基础知识

    满足产品功能要求、减少调试时间,使产品满足电磁兼容标准的要求,使产品不会对?#20302;?#20013;的其它设备产生电磁干扰。

    电路方案
    北京十一选五走势图